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ABSTRACT

Forecast skill of numerical weather prediction (NWP) models for precipitation accumulations over

California is rather limited at subseasonal time scales, and the low signal-to-noise ratiomakes it challenging to

extract information that provides reliable probabilistic forecasts. A statistical postprocessing framework is

proposed that uses an artificial neural network (ANN) to establish relationships between NWP ensemble

forecast and gridded observed 7-day precipitation accumulations, and tomodel the increase or decrease of the

probabilities for different precipitation categories relative to their climatological frequencies. Adding pre-

dictors with geographic information and location-specific normalization of forecast information permits the

use of a single ANN for the entire forecast domain and thus reduces the risk of overfitting. In addition, a

convolutional neural network (CNN) framework is proposed that extends the basic ANN and takes images of

large-scale predictors as inputs that inform local increase or decrease of precipitation probabilities relative to

climatology. Both methods are demonstrated with ECMWF ensemble reforecasts over California for lead

times up to 4 weeks. They compare favorably with a state-of-the-art postprocessing technique developed for

medium-range ensemble precipitation forecasts, and their forecast skill relative to climatology is positive

everywhere within the domain. The magnitude of skill, however, is low for week-3 and week-4, and suggests

that additional sources of predictability need to be explored.

1. Introduction

A number of recent publications have investigated the

levels of subseasonal forecast skill of operational ensem-

ble weather prediction systems for precipitation accumu-

lations over the contiguous United States (DelSole and

Trenary 2017; Wang and Robertson 2019; Vigaud et al.

2020). California has experienced prolonged droughts

from 2011 to 2016 that placed great stress on the state’s

water resources. Productive cool-season atmospheric

events can alleviate current and/or building drought

conditions, but they also have the potential to yield

extreme rainfall and even floods. Improving the skillfulness

of subseasonal precipitation forecasts would be extremely

valuable for reservoir management, as many decisions are

made 1–4 weeks ahead. Unfortunately, forecast skill for

precipitation accumulations over California drops off

significantly after week 2, and the low signal-to-noise

ratio makes it challenging for statistical algorithms to

extract information from the ensembles and generate

probabilistic forecasts (e.g., for ‘‘below-normal’’ or

‘‘above-normal’’ precipitation amounts) that are reli-

able and skillful (Vigaud et al. 2020, their Figs. 6 and 7).

In the context of short- to medium-range forecasting

(i.e., up to 7 days in advance), a variety of parametric

(Sloughter et al. 2007; Wilks 2009; Scheuerer and

Hamill 2015), nonparametric (Hamill and Whitaker

2006; Gagne et al. 2014; Henzi et al. 2019), and semi-

parametric (Taillardat et al. 2019; Schlosser et al. 2019)

statistical postprocessing approaches have been pro-

posed to obtain reliable probabilistic guidance from
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ensemble precipitation forecasts. These methods typi-

cally require a sufficiently large ‘‘reforecast’’ (i.e., ret-

rospective forecasts from the same model) dataset that

can be compared to past observations to identify sys-

tematic model errors and establish statistical relation-

ships between ensemble forecasts and observations.

Even larger training samples are needed in a sub-

seasonal forecasting context where the signal-to-noise

ratio is low and hence the risk of overfitting a statisti-

cal model increases. To reduce the overall number of

model parameters, Stauffer et al. (2017) standardize

both forecast and observation data to remove seasonal

and location-specific climatological characteristics and

fit a single statistical model that relates the standard-

ized forecasts and observations. We follow the same

general strategy, but our proposed data normalization

is more tailored to the mixed discrete-continuous na-

ture of the distribution of precipitation accumulations.

Observed precipitation amounts are discretized into a

fixed number of categories defined by climatological

quantiles, an artificial neural network (ANN) model is

used to relate normalized predictors to the precipitation

categories, and the ANN-based, real-time probability

forecasts are interpolated to full predictive cumulative

distribution functions (CDFs). The ANN framework

eliminates the need for parametric assumptions about the

predictive distribution and the predictor–predictand re-

lationships. Our working hypothesis is that by providing

geographic information as additional predictors, the

ANN’s ability to model nonlinear predictor interactions

permits a spatially adaptive adjustment of the raw en-

semble forecasts, while training data are used more ef-

ficiently than by postprocessing models that are fitted

separately for each location. We also propose an ex-

tension of the basic ANN model to a convolutional

neural network (CNN) model that can take images of

large-scale predictors as inputs and use them to predict

local precipitation accumulations.

In section 2 we provide more detail about the en-

semble forecasts and gridded observation data used in

this study. Section 3 describes the preprocessing of

predictors and predictands, the proposed ANN/CNN-

based postprocessing models, and the interpolation of

class probabilities to full CDFs. Verification results

and a discussion of possible extensions of the pro-

posed methodology are provided in sections 4 and 5,

respectively.

All computations were performed in Python (Python

Software Foundation 2018), visualizations are based on

the recommendations by Stauffer et al. (2015) using

the colorspace package (https://github.com/retostauffer/

python-colorspace). Our neural network routines are

implemented using the Python libraries Keras (Chollet

and others 2015) and TensorFlow (Abadi et al. 2016).

Python code for reproducing the results presented in this

paper is available online (https://github.com/mscheuerer/

NeuralNetworkS2S).

2. Data used in this study

The neural network methods developed here are used

to predict week-2, week-3, and week-4 precipitation

accumulations over California during the 20 cold sea-

sons (October–April) in the period from 1997/98 to

2016/17. The predictions are based on retrospective 11-

member ensemble forecasts from the European Centre

for Medium-Range Weather Forecasts (ECMWF)

Integrated Forecasting System (IFS) Cycle 43r3, which

were produced every Monday and Thursday between

13 July 2017 and 4 June 2018 with 0000 UTC initial

conditions (ECMWF 2017). With 20 years of reforecasts

and 61 initialization dates falling within the October–

April period, our dataset comprises 1220 seven-day

forecast periods for each lead time. Reforecasts for to-

tal precipitation, total columnwater (TCW), and 500-hPa

geopotential height (Z500) were retrieved from the

ECMWF MARS archive system at a horizontal reso-

lution of 0.258 over the area between 1348 and 1138W
longitude and between 298 and 468N latitude, for lead

times up to 28 days. Since the precipitation dataset used

for verification (see below) is only available in the form

of 24-h accumulations starting at 1200 UTC, we define

week-2 precipitation forecasts to be the predicted ac-

cumulations between 156- and 324-h lead time, week-3

precipitation forecasts the predicted accumulations

between 324- and 492-h lead time, and week-4 precip-

itation forecasts the predicted accumulations between

492- and 660-h lead time.

The ECMWF reforecasts are calibrated and verified

against the daily accumulated PRISM precipitation

dataset (PRISM 2019), which was obtained for the

years 1981–2017, upscaled to the 0.258 resolution of the

forecasts using arithmetic averaging, and clipped to

the bounds of California. This results in 663 grid points

for which forecast are generated. Compared to other

gridded precipitation datasets, PRISM uses observa-

tions from a relatively dense station dataset, which

results in improved representation of precipitation,

especially over mountainous and coastal areas of the

western United States (Daly et al. 2008). Analyzed

TCW and Z500 data required for the training of our

CNN model was obtained from the ERA5 dataset

(Hersbach et al. 2019) provided by the Copernicus

Climate Change Service (C3S) (2017).

For verifying and comparing the performance of the

different methods discussed in this article, we need to set

3490 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 08:52 PM UTC

https://github.com/retostauffer/python-colorspace
https://github.com/retostauffer/python-colorspace
https://github.com/mscheuerer/NeuralNetworkS2S
https://github.com/mscheuerer/NeuralNetworkS2S


aside independent test data that is not used for training.

To ensure that we have a large enough test dataset from

which we can calculate verification statistics with mini-

mal sampling variability, we use leave-one-season-out

cross validation. That is, we set aside one of the 20 cool

seasons for testing, train the models on the remaining

19 cool seasons, and cycle the 20 cool seasons in the

dataset so that eventually every cool season is evalu-

ated, while the corresponding models are trained on

independent data. For selecting the hyper-parameters

defining the specific neural network architecture, a

validation dataset has to be split off the training data-

set. Details about this procedure are provided at the

beginning of section 4a.

3. Statistical postprocessing methodology

Before we describe the ANN framework used here

for subseasonal probabilistic quantitative precipita-

tion forecasting, we briefly review the parametric ap-

proach that will be used as a benchmark. This method

has been proposed by Scheuerer and Hamill (2015) in

the context of statistical postprocessing of medium-

range ensemble precipitation forecasts and provides

probabilistic forecasts in the form of censored, shifted

gamma distributions (CSGDs). Comparisons performed

by Scheuerer and Hamill (2015), Baran and Nemoda

(2016), and Zhang et al. (2017) suggest that the CSGD

method and variants of it compare favorably with other

state of the art postprocessing approaches for precipi-

tation amounts; therefore, we select it as a reference

method in the present study.

a. Nonhomogeneous regression based on censored
shifted gamma distributions

The version of themethod proposed by Scheuerer and

Hamill (2015) used here proceeds in three steps. First, a

climatological CSGD is fitted to the observed precipi-

tation amounts at each grid point and for each month,

using data from a 61-day time window centered around

the 15th day of this month. The parameters mcl, scl, and

dcl defining themean, standard deviation, and shift of the

monthly climatological CSGDs are then linearly inter-

polated to day-specific parameters and are used later

in the regression equations for the predictive CSGD

parameters.

Second, the raw ensemble precipitation forecasts are

spatially smoothed using the same smoothing kernel

as Scheuerer and Hamill (2015) with a neighborhood

radius r 5 300 km. The rationale behind smoothing

is that medium-range precipitation forecasts are often

subject to substantial displacement errors, and spreading

out a forecast signal related to increased precipitation

amounts over a larger area can mitigate the ‘‘double

penalty’’ issue and improve forecast skill (BenBouallègue
et al. 2013; Scheuerer 2014; Scheuerer and Hamill 2015).

To keep the algorithm simple, we omit the quantile-

mapping step performed by Scheuerer and Hamill

(2015) before the smoothing (see online supplement A

for a justification of that omission). The mean f of the

smoothed ensemble forecasts is then calculated and

divided by its average over all reforecast dates in the

training dataset within a 61-day time window centered

around the 15th of the month. This multiplicative stan-

dardization yields a dimensionless predictor f ano that

can now be linked to the parameters m and s of the

predictive CSGD.

This link is established in a third step where we define

m5
m
cl

a
1

log 11 (exp(a
1
)2 1) a

2
1 a

3
f
ano

� �� �� �
,

s5 a
4
s
cl

ffiffiffiffiffiffi
m

m
cl

r
, (1)

while the shift parameter d 5 dcl is kept fixed. The re-

gression parameters are chosen such that the continu-

ous ranked probability score (CRPS) (Matheson and

Winkler 1976) obtained by applying these regression

equations to a training dataset is minimized. The re-

gression equations in (1) are simpler than those used

by Scheuerer and Hamill (2015): they involve only four

parameters and a single predictor f ano summarizing in-

formation in the raw ensemble forecasts. Simplification

is required to avoid overfitting the model in the present

situation of poor signal-to-noise ratio of subseasonal

forecasts and the smaller sample size of weekly (vs daily)

accumulations. We felt that the POPf (ensemble prob-

ability of precipitation) predictor could be omitted, as it

is not as useful for the 7-day accumulations considered

here than it was found to be for the 12-h accumulations

studied by Scheuerer and Hamill (2015). A predictor

that measures the ensemble spread could be useful, but

it is particularly prone to overfitting and was therefore

also omitted (see online supplement A for a justification

of this omission). Finally, while separate parameters a1,

a2, a3, and a4 are fitted for each forecast lead time and

each grid point, the same parameters are used across the

entire cool season considered here in order to increase

the training sample size. This implies an assumption that

the NWP forecast skill does not vary too much dur-

ing the cool season, while including the parameters mcl,

scl, and dcl in the regression equations ensures that at

least seasonal variations in the precipitation climatology

are accounted for.

Hamill and Scheuerer (2018) employed modified re-

gression equations and included additional predictors
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that account for spatial variations to allow sharing re-

gression parameters across different grid points, but

they found that the CSGD method did not retain the

good reliability and performance reported in other

publications. Here, we instead use the simplified im-

plementation of the CSGD method described above

which otherwise follows the usual approach of fitting

separate parameters at each grid point to avoid local

biases. The desire to share parameters across different

grid points, however, is one of our motivations to ex-

plore the use of ANNs which are more flexible than a

nonhomogeneous regression framework like the CSGD

method, and allow one to include predictors that can

interact in a nonlinear way and thus account for spatial

variations in the model parameters.

b. Neural network–based framework for probabilistic
quantitative precipitation forecasting

The development of increasingly sophisticated ANNs

is driven by applications such as speech recognition, vi-

sual object recognition and object detection (LeCun

et al. 2015), but ANNs are also increasingly used in the

context of weather prediction. Examples include prediction

of tornadoes (Marzban and Stumpf 1996; Lakshmanan

et al. 2005), damaging winds (Marzban and Stumpf 1998),

hail (Marzban and Witt 2001; Gagne et al. 2019), snowfall

(Ware et al. 2006; Roebber et al. 2007), synoptic-scale

fronts (Lagerquist et al. 2019), and hurricane intensity

(Cloud et al. 2019). Two recent publications proposeANN-

based statistical postprocessing methods for continuous

surface weather variables and obtain full predictive distri-

butions in two differentways: 1)Rasp andLerch (2018) still

assume a parametric distribution family but use an ANN

to establish (possibly nonlinear) predictor–predictand re-

lationships. 2) Bremnes (2020) characterizes predictive

distributions in the form of conditional quantile functions

represented as a linear combination of Bernstein polyno-

mials. The coefficients of these basis functions are linked

to the predictors via an ANN, and this approach permits

flexibility with regard to both shape of the predictive dis-

tribution and predictor–predictand relationships.

Statistical postprocessing of precipitation forecasts

always comes with additional challenges. First, the point

mass at zero makes it difficult to find suitable parametric

distribution families. The CSGD introduced above has

been demonstrated to be capable of representing un-

certainty about precipitation amounts in both wet and

dry weather situations, but important aspects of the

distribution such as the associated probability of pre-

cipitation are controlled by a complex interaction of the

three distribution parameters, which makes it difficult to

share model parameters across grid points with different

climatologies. A quantile-based modeling approach, on

the contrary, would have to deal with the fact that a

variable number of these quantiles may be zero. Here, we

explore a different approach to approximating a full pre-

dictive distribution by partitioning the range of possible

outcomes into m 1 1 categories, predicting the probabili-

ties for observed precipitation amounts to fall into each

category, and interpolating the resulting probability

vector to a full predictive distribution.

In contrast to Li et al. (2019) who propose a similar

approach to probabilistic forecasting in a more general

context, we use a partitioning scheme that takes the

climatology at each day of the year (doy) and location

into account. This way it is possible to shareANNmodel

parameters across time and space while avoiding highly

unequal frequencies of occurrence of each category across

different seasons and different grid points.Denote byBi5
[ci21, ci] the bin defining the ith category for i2 {0, . . . ,m}.

The first (‘‘no precipitation’’) bin is defined by c215 0mm

and c0 5 0.254mm (i.e., any 7-day precipitation accumu-

lation smaller or equal to 0.01 in. is considered negligible).

Denoting the climatological probability of B0 by pcl,0,

we set

a
cl,i

d p
cl,0

1 (12p
cl,0

)
i

m
, i5 0, . . . , m,

and define ci as the climatological quantile of levelacl,iwith

cm :5 ‘. With this definition, each category i 2 {1, . . . ,m}

occurs with climatological probability pcl,i 5 (12 pcl,0)/m.

A climatology is constructed by composing a sample of

observed precipitation amounts for each doy and each grid

point, using data from a 61-day time window centered

around this doy and all years for which precipitation ana-

lyses are available (here: 1981–2017). The ‘‘no precipita-

tion’’ probability pcl,0 and the quantiles c1, . . . , cm21 are

then calculated from this sample. In our case, the sample

size is 2257, which permits a sufficiently robust calculation

of these quantiles. An example of the partition boundaries

at the grid points along a 39.3758N latitude transect for

doy5 15 (15 January) is depicted inFig. 1. Presumably due

to rounding effects, our climatological samples contain a

number of duplicate values, and as a result it occasionally

happens that ci 5 ci11 for at least one i. Since the bound-

aries c0, . . . , cm21 are included in both of the bins they are

separating, all bins are still well defined, but the category

assignment is ambiguous. If the categorical precipitation

data are represented by a binary indicator matrix with one

column for each category and a value of 1 if the precipi-

tation accumulation is in that category and 0 otherwise, the

ambiguous assignment translates into multiple cases of 1

in each row.

To normalize the meteorological predictors (here: pre-

cipitation forecasts from K different ensemble members)

we calculate the extreme forecast index (EFI) in the revised
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form proposed by Zsoter (2006). First, we spatially smooth

each ensemble member in the same way as described in

section 3a to reduce the impact of displacement errors in

the forecast fields. Then, we compose a sample of these

smoothed precipitation forecasts (pooling across all en-

semble members) for each doy and each grid point, using

data from a 61-day time window centered around this doy

and all years except the year left out for verification. This

sample represents the climatological reference distribution

for the calculation of the EFI (see section A for details),

which quantifies the departure of the ensemble forecast

distribution from the model climatology. The EFI takes

values in [21, 1], and its interpretation is independent from

the climatology at the respective doy and grid point, which

makes it a perfect statistic to summarize ensemble infor-

mation for use as a meteorological predictor in our ANN

model. Longitude and latitude of each grid point of the

observation dataset, normalized to [21, 1], are provided

as additional geographic predictors in order to allow the

postprocessingmodel to adapt to possible variations of skill

across the domain.

The ANN architecture used to link these predictors

with observed precipitation categories is rather basic,

except for one important modification discussed below.

The input layer is fully connected to a (single) hidden

layer with 10 nodes, and this hidden layer is fully con-

nected to a preliminary output layer. For both layers we

use exponential linear units (ELUs, Clevert et al. 2015)

with a 5 1 as activation functions and L1 regulariza-

tion with regularization parameter determined as de-

scribed in section 4a. ELUs were preferred over rectified

linear units (ReLUs) because they have similar proper-

ties but lead to smoother partial dependence curves.

Experiments with L2 and dropout regularization yielded

very similar results in this basic setup (not shown).

Possible benefits of a larger number of nodes or more

hidden layers are studied in section 4a.

Let x0, . . . , xm be the preliminary output from the

network described above. A softmax activation function

applied to these values directly would result in forecast

probabilities:

p
i
5

exp(x
i
)

�
m

j50

exp(x
j
)

, i5 0, . . . , m:

With increasing forecast lead time the predictors be-

come less and less informative, and the best a post-

processing model can do in this case is revert to the

climatological probabilities pcl,0, . . . , pcl,m at each doy

and each grid point. We can help it in doing so by pro-

viding the logarithms of these probabilities as additional

predictors which bypass the hidden layer(s) (and any

regularization), and are added to the preliminary output

values x0, . . . , xm. That is, we apply the final softmax

activation function to the values:

z
i
5 x

i
1 log(p

cl,i
), i5 0, . . . , m (2)

to obtain

p
i
5

exp(x
i
)p

cl,i

�
m

j50

exp(x
j
)p

cl,j

, i5 0, . . . , m:

The last equation shows that the values x0, . . . , xm can be

understood as (logarithms of) multiplicative anomalies

from the climatological probabilities. It also shows that

FIG. 1. (left) Climatological mean of 7-day precipitation amounts in January and meridional transect at 39.3758N
latitudewith the grid point in the TahoeNational Forest studied latermarked by a red asterisk. (right) Boundaries for

a partition into 20 categories, based on the respective climatological distributions for all grid points along that

transect, with percentiles depicted as blue dots.
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in the case of no skill, the ANN only needs to revert to

preliminary outputs equal to zero in order for the final

output vector to be equal to (pcl,0, . . . , pcl,m). Figure 2

illustrates the ANN architecture and the use of the ad-

ditional climatology predictors. It also shows how in a

case study of an atmospheric river event (accumulation

period: 8–14 January 2017) the forecast probabilities at

a grid point in the Tahoe National Forest converge to

the climatological probabilities with increasing forecast

lead time. Results of additional experiments that dem-

onstrate the benefit of this use of climatological infor-

mation are reported in the online supplement B.

A special kind of loss function is required to deal

with the possibly ambiguous category assignments that

can occur with the gridded precipitation observations

as mentioned above. In appendix B, we propose a

modified categorical cross-entropy score (MCCES)

that can handle this type of ‘‘censored’’ observation

data in those (few) cases where the category assign-

ment is indeed ambiguous, while it reduces to the

standard categorical cross-entropy loss in the cases

where the observed precipitation amount falls into

one definite category. To avoid introducing additional

stochasticity into the optimization (keeping the low

signal-to-noise ratio in our setup in mind), we decided

to estimate the ANN parameters via batch gradient

descent (i.e., the model is only updated after all

training examples have been evaluated) using the

Adam optimization method (Kingma and Ba 2014)

with a learning rate of 0.05. This parameter was found

to ensure stable convergence, and optimization was

stopped after 100 epochs since additional iterations

did not improve the training scores.

We finally describe how a forecast probability vec-

tor p 5 (p0, . . . , pm) can be interpolated to a full pre-

dictive cumulative distribution function F. The value

of F at each category boundary ci can be calculated as

the sum of the first i components of p. For the forecast

example from Fig. 2b these cumulative probabilities

are depicted in Fig. 3a. Now consider the cumulative

hazard function:

H(x)52log[12F(x)]:

For the 7-day precipitation accumulations studied here

and larger indices i, we find that the points [ci, H(ci)]

tend to be aligned along a straight line (see Fig. 3b).

A perfectly linear function H would imply that the

FIG. 2. (a) A schematic of the ANN architecture used in this study. For improved readability the ANN is depicted

with 5 (instead of 10) nodes in the hidden layer, and 4 (instead of 20) categories for which forecast probabilities are

calculated. (b) The categorical forecast probabilities for 8–14 Jan 2017 precipitation accumulations at a grid point in

the Tahoe National Forest.

FIG. 3. (a) Cumulative probabilities for the forecast example fromFig. 2b), (b) corresponding cumulative hazards, and (c) predictive CDFs

obtained by back-transforming the linearly interpolated cumulative hazards.
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predictive distribution is exponential. Approximating

H by a piecewise linear function that interpolates the

points [c0,H(c0)], . . . , [cm21,H(cm21)] and extrapolates

linearly beyond cm21 is equivalent to approximating the

predictive CDF by a piecewise exponential function,

and seems to provide a good reconstruction of F as

shown in Fig. 3c. From this predictive CDF any proba-

bilistic forecast of interest (e.g., exceedance probabili-

ties for fixed or arbitrary climatology-based thresholds)

can be derived.

c. Neural network–based prediction using NWP
forecasts of large-scale predictors

For longer lead times, we can expect timing and dis-

placement errors to become larger and larger, and the

different ensemble members to diverge more and more.

At some point it may be more useful to consider large-

scale predictors that provide information about the

general atmospheric state over the area of interest in-

stead of forecasts of specific precipitation amounts.

Here, we consider forecasts of geopotential heights at

500hPa (Z500) and total column water (TCW) over an

area between 1348 and 1138Wlongitude and between 298
and 468N latitude, averaged over the 7-day forecast pe-

riod and upscaled to a 18 resolution. From these fore-

casts, we hope to obtain information about the direction

and strength of the atmospheric flow, and about the

available amount of precipitable water, respectively.

The two large-scale predictors are normalized in dif-

ferent ways. For TCW, we are mostly interested in the

anomalies from climatology (‘‘moist’’ or ‘‘dry’’), and we

therefore normalize separately for each forecast grid

point.We first calculate the 10th and the 90th percentiles

across all years for which we have data, and then ap-

proximate the climatology at this grid point for each

doy by fitting a simple, harmonic regression curve (a

constant, a sine, and a cosine term) to the respective

percentile values during the doys in the cool season

period considered here. The TCW data are then nor-

malized such that the 10th percentile is mapped to 21

and the 90th percentile is mapped to 1. For the Z500

predictor we expect that gradient information may be

more important than the actual values, and therefore a

local normalization is less appropriate as it removes the

climatological (typically north–south) gradient from the

fields. Instead, we normalize with respect to the 1st and

99th climatological percentile, smoothed over the cool

season as for TCW, but calculated across all forecast grid

points rather than for each grid point individually.

In contrast to section 3b, the predictor is now an image

with 223 18 pixels and two channels, and this predictor

is no longer specific to each observation grid point but

meant to provide forecast information for the entire

domain D . A number of changes to the ANN frame-

work proposed in section 3b are made to account for

these differences. First, we note that convolutional

neural networks (CNNs) are the perfect tool to deal

with a predictor of that type (i.e., an image with multiple

channels). Therefore, the input layer in Fig. 2a) is re-

placed by a sequence of 2D convolutional layers and

max pooling layers. Specifically, the two-channel image

is run through

d a 3 3 3 convolutional layer with four filters, no

padding, and ELU activation.
d a 2 3 2 max pooling layer.
d another 33 3 convolutional layer with eight filters, no

padding, and ELU activation.
d another 2 3 2 max pooling layer.

The output of the second max pooling layer is

then flattened and used as input to the hidden layer

in Fig. 2a).

The preliminary output layer in Fig. 2a) also needs

to be modified. In the ANN framework described in

section 3b, each grid point of the observation dataset is a

separate case, and the preliminary output x0, . . . , xm de-

termines the probability forecast for each of the m 1 1

categories at that grid point. Now, the predictor image

needs to inform the probability forecasts at all observa-

tion grid points simultaneously. This can be done by de-

fining local, spatially smooth basis functions f1, . . . , fl,

and changing the preliminary output layer such that it

returns a tensor (~xj,i)j51,..., l;i50,...,m. The dot product with

the tensor defined by evaluating each basis function at

all locations s 2 D yields a new tensor

x
s,i
5�

l

j51

~x
j,i
f
j
(s), (3)

which represents the anomalies from the climatologi-

cal probabilities at each location s 2 D and for each

precipitation category i 2 {0, . . . , m}. These anomalies

are then used in the same way as in (2) (i.e., they are

added to the logarithm of the climatological proba-

bilities at each grid point and turned into probability

forecasts by using a softmax activation function).

Figure 4 depicts the l 5 5 basis functions used in the

present study, details about their construction are pro-

vided in appendix C. A schematic of the complete CNN

model is shown in Fig. 5a).

The computational details for this CNN-based post-

processing model are similar to those in section 3b. The

MCCES (see appendix B) is again used as a loss function

to be minimized by the Adam optimization method

which is now run with a learning rate of 0.01 and stopped

after 150 epochs.Unlike for the basicANN in section 3b,
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dropout regularization (Srivastava et al. 2014) was found

to be superior to L1 and L2 regularization for fitting the

CNN model proposed here. Dropout is applied before

the input of each hidden layer with a dropout rate de-

termined as described in section 4a.

Amajor change is made in the application of the CNN

framework compared to the basic ANN framework.

Since the learning task—identifying features in a two-

channel image of Z500 and TCW that can be linked to

precipitation amounts over California—is far more so-

phisticated than that of linking forecast to observed

precipitation amounts, the low signal-to-noise ratio at

longer lead times may make it very hard to learn useful

filters in the convolutional layers. While we can hope

that some of the forecast errors for Z500 and TCW av-

erage out when working with the ensemble mean, av-

eraging over ensemble members may dilute interactions

between those two predictor variables, and gradients of

the different Z500 forecast fields may partly cancel out.

We therefore take a different approach and apply the

above CNN framework in two steps. In the first step, the

CNN is used to establish a link between observed pre-

cipitation amounts and 7-day averages of analyzedZ500

and TCW, for which we can expect the link with pre-

cipitation accumulations to bemuchmore clear-cut than

for extended-range forecasts of these quantities. The

week-2/-3/-4 ensemble forecasts are then normalized in

the same way as the analyses (but with respect to the IFS

model climatology), and each member k is run sepa-

rately through the CNN fitted to the analyzed Z500

and TCW data. The preliminary output values x
(k)
s,i , k 5

1, . . . , 11, for category i and location s 2 D obtained in

this way can be viewed as an ensemble of multiplicative

perfect prog probability anomalies. They can be aver-

aged to

x
s,i
5

1

11
�
11

k51

x
(k)
s,i , s 2 D , i5 0, . . ., m,

added to the climatological log-probabilities as in (2),

and turned into probability forecasts via softmax ac-

tivation functions. By normalizing forecasts and an-

alyses with respect to their respective climatologies,

we implicitly remove systematic biases that the fore-

casts may have. However, this perfect prog approach

does not account for insufficient ensemble spread,

and the resulting probabilities may be overconfident.

In the second step, we therefore allow a relaxation of

the ensemble mean perfect prog probability anoma-

lies xs,i toward climatology via a relaxation factor h

that extends (2) to

z
s,i
(h)5hx

s,i
1 log(p

cl,i
), i5 0, . . . , m: (4)

A reasonable parameter range for h is [0, 1] where any

value h , 1 reduces sharpness (and thus potential

overconfidence) of the probability forecasts and h 5 0

entails a complete relaxation to climatology (which is

called for in the case where the ensemble forecasts have

no skill). A schematic illustrating the complete proce-

dure for generating probability forecasts for each cate-

gory based on IFS ensemble forecasts of Z500 and TCW

is depicted in Fig. 5b). The optimal h can be found by

minimizing the same MCCES used to fit the neural

network parameters. The training datasets used for this

optimization are composed of the same dates that were

FIG. 4. (bottom) Basis functions used to transform the output from the hidden layer in our CNN into multiplicative probability

anomalies over California and (top) preliminary radial basis functions from which the final basis functions were obtained through nor-

malization. For details see appendix C.
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used to train the CNN model. We assume h to be con-

stant across the domain but specific to each forecast

lead time. In our study, typical values were h’ 0.63 for

week 2, h’ 0.29 for week 3, and h’ 0.23 for week 4.

4. Verification of the probabilistic forecasts

a. Choice of hyperparameters

We first discuss the choice of several tuning pa-

rameters of the ANN/CNN frameworks proposed in

section 3, which have either not been specified yet or

need further justification in the form of a sensitivity

analysis. If the goal is to find the best possible neural

network configuration and hyperparameters, one could

use one of the automated procedures that have been

proposed in the literature (e.g., Hutter et al. 2011;

Bergstra and Bengio 2012). Here, we take a different

approach, starting with the relatively simple neural

network architectures proposed in section 3, and

providing a more detailed analysis of the potential

benefits of more complex architectures by comparing

with two specific, more complex alternatives. This

may not lead to the overall best possible configura-

tion, but we believe this approach yields more insights

into the effects of different modeling choices. To

make these choices, a three-way split of the dataset

into a training, a validation, and a test dataset is required.

For the calculations made within this subsection we

therefore perform a 5-fold cross-validation inside the

leave-one-season-out cross validation that already set

aside one year for testing. The remaining data are split up

into five disjoint, equally large time periods, and neural

network models with different choices of tuning param-

eters are trained on 4 of these 5 folds and evaluated on

the remaining fold. The validation fold is cycled so that

we end up with five different validation scores for each

year of the outer cross-validation loop. Depicting these

five values separately gives us some idea about the

variability that is due to 1) the stochasticity in the

neural network model fitting and 2) possibly differ-

ent predictability during the 5 cross-validation folds.

We can compare that variability with the differences

between, for example, different neural network ar-

chitectures and check if these systematic differences

are large enough compared to the random differences

between the 5 folds to make a case for a more com-

plex model.

This type of approach is first applied to compare the

architecture of the ANN model from section 3b (one

hidden layer with 10 nodes) with two alternative, more

complex models:

d one hidden layer with 20 nodes
d two hidden layers with 10 nodes each

It is also used to check whether the number m 1 1

of categories into which the observed precipitation

amounts are discretized has an impact on the forecast

quality. We make m 5 19 our default choice and com-

pare that against a coarser (m5 9) and a finer (m5 29)

discretization. The advantage of the former is that fewer

output nodes (and thus fewer parameters) are required,

while the latter results in less information loss due to the

discretization and permits more degrees of freedom in

the predictive CDF that is reconstructed from the pre-

dicted category probabilities. The MCCES is not suit-

able for this comparison because larger values of m

systematically entail a larger loss, so the comparison

would be biased in favor of a smaller number of cate-

gories. We therefore use the CRPS as a loss function for

this particular comparison. The CRPS can be calculated

from the predictive CDFs via numerical integration and

does not favor a particular choice of m.

Another important hyperparameter in the basic ANN

framework from section 3b is the parameter l that

FIG. 5. (a) Schematic of the CNN model trained on ERA5 data. (b) Illustration of how, in a

second step, the fitted CNN model is applied to IFS ensemble forecasts and how the prelimi-

nary output obtained separately for each member is aggregated to a single probability forecast

vector.
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controls the strength of the L1 regularization. We test

the choices l 2 {1026, 1025, 1024, 1023} and select the

value that yields the lowest MCCES averaged over the 5

validation folds, separately for each of the neural net-

work architectures and each choice of m. The most

common choice for the week-2 forecasts was l 5 1026,

while for week 3 and week 4 larger values were more

common, especially for the more complex neural net-

work architectures.

Figures 6a,b show continuous ranked probability skill

scores (CRPSSs) for 10 and 30 categories (using the

respective optimal l) relative to the default choice of 20

categories. For almost every test year, the five different

validation CRPSSs fall both below and above zero with

no clear tendency toward a significant improvement or

deterioration of skill.We conclude that in our setting the

forecast results are not sensitive to the number of cate-

gories into which the gridded precipitation observations

are discretized.A similar conclusion can be reachedwith

regard to an increase of the number of nodes in the

hidden layer of our default ANN architecture, which does

not show systematic improvement of the modified cate-

gorical cross-entropy skill scores (MCCESSs) shown in

Fig. 6c). Figure 6d) shows some tendency for improve-

ment of week-2 forecast skill if a more complex archi-

tecture with two hidden layers is used, while that same

architecture entails a deterioration of skill during week 3

and week 4. To keep things simple, we continue with our

default model for all forecast lead times, but we note

that if this ANN postprocessing framework were to be

applied in the context of medium-range forecasting for

which we usually see a better signal-to-noise ratio, the

issue of optimal network architecture would have to be

reassessed.

For the CNN framework proposed in section 3c the

primary hyperparameter that needs to be selected is the

dropout rate. Moreover, since the learning task is more

complex and dropout reduces the effective number of

nodes, we check again if more complex architectures

yield better results than the proposed basic architecture

with one hidden layer with 10 nodes.We also include the

comparison that led us to the conclusion that dropout

regularization is preferable to L1 regularization for

the CNN framework, and a comparison of the forecast

performance obtained with different configurations of

filters in the two convolutional layers. Results of addi-

tional experiments with different configurations of the

convolutional part of the CNN are reported in online

supplement C. Since the CNN is trained with ERA5

data, tuning parameters and modeling choices are in-

dependent of forecast lead time. Dropout rates are se-

lected separately for each architecture and each test

year from the candidate set {0.1, 0.2, 0.3, 0.4, 0.5} as the

minimizers of the average MCCES over the 5 validation

folds. The optimal value was typically between 0.3 and

0.5 for the two architectures with a single hidden layer

and between 0.1 and 0.3 for the architectures with two

hidden layers (with dropout being applied before each

of them). Figure 6e) suggests that the CNN architecture

with two hidden layers does not yield systematically

better probabilistic forecasts, and shows only a slight

tendency toward improved forecasts with 20 nodes in

FIG. 6. (top) CRPSS for 10 or 30 categories relative to the default choice of 20 categories, (middle) MCCESS of

more complex ANN architectures relative to the default architecture, and (bottom)MCCESS of different variations

of the default CNN architecture. Each of the vertical lines corresponds to one cross-validation test year. The dots

along this line are the validation scores of the 5 cross-validation folds associated with a single test year.
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the single hidden layer. Since the signal-to-noise ratio is

less favorable when IFS ensemble forecasts of Z500 and

TCW are used, we decided to continue with the simpler

architecture with 10 nodes. Regarding regularization,

however, we see much clearer evidence that dropout

yields better results than L1 regularization, so we

make this our default choice in the CNN framework.

Figure 6d) finally shows results for different numbers

of filters in the convolutional layers. There is a slight

tendency toward better results if more filters are used,

but again we feel that the case for a more complex

model is not strong enough given the added challenges

when using the fitted CNN model with IFS ensemble

forecasts. Therefore, we continue with our default

choice of four filters in the first and eight filters in the

second convolutional layer.

b. Ranked probability skill scores

We present verification results obtained by evaluating

the probabilistic forecasts by the basicANNmethod and

the CNN-based approach over the cool season left out

for testing and then aggregating over all 20 cross-

validated seasons. In the subseasonal context evalu-

ation typically focuses on ‘‘below normal’’ and ‘‘above

normal’’ probabilities, but since our National Weather

Service partner, NOAA’s Climate Prediction Center

(CPC), provides probabilities of exceeding the 85th

climatological percentile in their hazard assessment tool

(www.cpc.ncep.noaa.gov/products/predictions/threats/

extremesTool.php) we include this threshold in our

performance metric and study ranked probability

scores (Epstein 1969; Murphy 1971) of predicted

probabilities for exceeding the 33rd, 67th, and 85th

climatological percentiles at each grid point of our

observation dataset. Ranked probability skill scores

(RPSSs) are obtained using climatological frequen-

cies (calculated from observed precipitation amounts

across all 20 seasons and the 15 forecast valid dates

closest to the forecast date of interest) of threshold

exceedance as a reference.

Table 1 shows RPSSs for the two neural network ap-

proaches, the variant of the CSGD method described

in section 3a, raw ensemble probability forecasts, and

bias-corrected ensemble probability forecasts obtained

by calculating the relative frequencies of members ex-

ceeding percentiles of the IFS model climatology rather

than observation-based percentiles. This simple bias

correction improves the ensemble forecast skill some-

what, but more improvement is realized with the more

sophisticated postprocessing methods. The most skillful

week-2 forecasts are obtained with the basic ANN ap-

proach, which suggests that IFS week-2 precipitation

forecasts provide valuable forecast information which

machine learning methods can extract successfully. In

week 4, on the contrary, the CNN approach fares best,

which supports our initial hypothesis that IFS infor-

mation about larger-scale weather patterns is more

useful than its precipitation forecasts at this lead time.

Unfortunately, while forecast skill is positive across the

entire domain (see Fig. 7), its magnitude is rather small,

so without additional improvements to the forecast

system or successful use of additional predictors the

value of these probabilistic week-4 forecasts is still

limited. Applying the CNN approach to only Z500

fields or only TCW fields both decreases forecast per-

formance at all lead times compared to the full model

that uses both predictors. Whether, conversely, pro-

viding additional large-scale predictors can further

improve forecast performance is a question that will be

addressed in future research.

Let us now take a closer look at the differences in

performance of the CSGD, the basic ANN, and the

CNN approach. Figure 7 shows RPSS maps for each of

these methods and the three different forecast lead

times considered here. One-sided, paired t tests were

performed, separately for each grid point, to test

whether the improvements of ANN/CNN-based fore-

cast skill over CSGD-based forecast skill are statisti-

cally significant. Due to the overlapping forecast periods,

the samples of RPS differences are not independent, but

TABLE 1. RPSSs of probability forecasts at each analysis grid point, aggregated over the forecast domain and the 20 seasons. The

‘‘ERA5’’ column shows the RPSS of probability forecasts obtained by applying the fitted CNN models to (cross-validated) ERA5 data

instead of IFS ensemble forecasts.

ERA5 IFS ENS week 2 IFS ENS week 3 IFS ENS week 4

Raw ensemble — 0.133 20.088 20.087

Bias-corrected ensemble — 0.157 20.054 20.066

CSGD — 0.190 0.025 0.003

ANN — 0.207 0.036 0.010

ANN, EFI only — 0.200 0.034 0.010

CNN 0.419 0.180 0.034 0.016

CNN, Z500 only 0.347 0.155 0.025 0.012

CNN, TCW only 0.307 0.147 0.030 0.012
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we found that they can be approximated by first-order

autoregressive processes. The variance of the sampling

distribution, required in the denominator of the test

statistic, can then be estimated as described in Eq.

(2.15) of Jones (1975) to reflect the influence of the

serial correlation of RPS differences. We account for

test multiplicity (each grid point is tested individually)

by controlling the false discovery rate (FDR) (Benjamini

and Hochberg 1995) at the level aFDR 5 0.1 as described

by Wilks (2016). The skill increase of ANN week-2

forecasts relative to CSGD forecasts is statistically

significant at 86% of all grid points within California.

By weeks 3 and 4, this number drops down to 42% and

22%, respectively. At these longer lead times, the

improvement mainly occurs in areas where the CSGD

forecasts have negative skill, which we hypothesize is

due to overfitting. These areas happen to be the dryer

ones where a larger fraction of the observed precipi-

tation amounts is equal to zero, and thus fewer data

pairs that are informative for model fitting are avail-

able. By removing climatological characteristics and

fitting a single model that works for all grid points si-

multaneously, the ANNmethod avoids overfitting and

skill never drops much below zero. The CNN approach

performs worse than the CSGD method in week 2,

comparable to the basic ANN method in week 3, and

better than both of the other methods in week 4, where

the skill improvement over the CSGD method is sta-

tistically significant at 68% of all grid points. Like the

basic ANN method, the CNN method provides fore-

casts which at the very least do not fare worse than

climatological forecasts, and in week 4 it can extract

FIG. 7. RPSSs of probability forecasts for exceeding the 33rd, 67th, and 85th climatological percentiles at each analysis grid

point, aggregated over the 20 seasons. For (middle) ANN and (bottom) CNN, grid boxes where the improvement over the (top)

CSGD forecasts is statistically significant when controlling the false discovery rate at the level aFDR 5 0.1 are emphasized with

thicker border lines.

3500 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 08:52 PM UTC



somewhat more forecast information from the IFS en-

semble and attain better skill in Central and Northern

California.

c. Spatial adaptivity of the basic ANN and the
CNN model

Apart from the common idea of discretizing the

predictand into climatology-dependent categories and

providing the corresponding climatological frequen-

cies as ‘‘auxiliary predictors’’ to the network, both

neural network approaches use different strategies to

permit a spatially varying response to the inputs.

The basic ANN model removes climatological char-

acteristics from the IFS ensemble precipitation forecasts

and provides geographic coordinates as additional pre-

dictors which allow the ANN model to account for

spatial variations in forecast skill. Are these predictors

useful? Table 1 includes results obtained with a varia-

tion of the basic ANN model in which the EFI of the

IFS ensemble precipitation forecasts is used as the only

predictor (i.e., the ANN can no longer use geographic

information to modulate the influence of the EFI pre-

dictor on the local probability anomalies). As a result,

the forecast skill decreases compared to the proposed

implementation of the ANN model. To illustrate that

this decrease in skill is indeed related to spatial varia-

tions of IFS skill, Fig. 8 depicts the Kendall rank corre-

lation coefficients between the EFI and the categorized

precipitation observations at each grid point. It also

depicts the differences between the RPSS obtained

with the full ANN model and the variant without the

longitude and latitude predictors. For all forecast lead

times, IFS skill is markedly lower over Southern

California, and this region happens to be the one that

benefits most from the use of geographic coordinates

as additional predictor. Apparently, the ability to

model nonlinear predictor interactions permits the

ANN model to use this information to modulate the

local response to a given EFI value. This allows us to

use a single postprocessing model to generate spa-

tially adaptive, probabilistic forecasts over the entire

domain.

The CNN approach proposed in section 3c uses

identical predictors (here: two-channel images) for each

grid point of the observation dataset and models the

influence of these predictor in different geographic areas

through the use of local basis functions (see Fig. 4). To

demonstrate that this indeed permits different local re-

sponses, Fig. 9 depicts the normalized ERA5-based

Z500 and TCW fields associated with the lowest and

highest predicted probabilities of exceeding the 85th cli-

matological percentile at Eureka (Northern California)

and San Diego (Southern California). The large-scale

scenarios that minimize (maximize) the probabilities are

different for the two locations with respect to both

direction of atmospheric flow and area of the driest

(wettest) TCW anomalies. Even though we made no

attempt to optimize their number, positions, or radius

FIG. 8. (top)Kendall rank correlation coefficients between the EFI and the categorized precipitation observations at each grid point and

(bottom) differences between the RPSS obtained with the full ANN model and the ANN model without the longitude and latitude

predictors.

AUGUST 2020 S CHEUERER ET AL . 3501

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 08:52 PM UTC



of influence, the general concept of local basis func-

tions seems to be effective for modeling the spatially

varying influence of large-scale predictors that come

in the form of multichannel images.

5. Discussion

We have proposed a new ANN-based approach for

generating probabilistic subseasonal precipitation fore-

casts based on the output of an ensemble weather

prediction system. The low signal-to-noise ratio at

subseasonal lead times requires highly efficient use of

training data, and we achieve this by removing cli-

matological characteristics from both forecast and

observation data. This way, a single ANN model can

generate probabilistic forecasts at every grid point

within the forecast domain. Providing climatological

information to the ANN helps ensure that the resulting

probabilistic forecasts never perform worse than cli-

matological forecasts. We also found that adding pre-

dictors with geographic information can account for

spatially varying skill of the underlying NWP forecasts.

An extension of the basic ANN to a CNN has also

been proposed and allows one to use a different type of

predictor: instead of using NWP model output that is

specific to each grid point, the CNN model can extract

information from multichannel images, and is thus

capable of making local predictions based on forecast

large-scale atmospheric conditions. Both ANN and

CNN frameworks were demonstrated over California

with subseasonal forecasts from the IFS ensemble. The

basic ANN outperformed a state-of-the-art postprocess-

ing method developed for medium-range forecasting at

all lead times, the CNN yielded the most skillful week-4

probabilistic forecasts.

Despite the improvements obtained with the pro-

posed ANN/CNN methodology, forecast skill beyond

week 2 is rather limited. The focus of this paper is to

propose new postprocessing methodology that ad-

dresses the particular challenges with subseasonal prob-

abilistic forecasting, but further efforts are required to

explore additional sources of subseasonal predictability.

More systematic investigations into selecting an optimal

set of predictors could be performed. The ANN-based

approach presented here uses only IFS precipitation

forecasts and the CNN-based approach uses only fore-

casts of Z500 andTCW, but best results across all forecast

lead times are likely achieved by using a combination of

surface weather variables and large-scale variables as

predictors. Moreover, there may well be sources of pre-

dictability that are not optimally used by NWP models.

In the context of seasonal precipitation forecasting over

FIG. 9. Normalized Z500 (contours) and TCW fields associated with the (left) lowest (right) highest predicted

probabilities of exceeding the 85th climatological percentile at (top) Eureka and (bottom) San Diego.
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the western United States, Switanek et al. (2020) found

that rather basic statistical models can extract forecast

information from past sea surface temperature analyses

that allows them to outperform state-of-the-art NWP

models, and recent research by M. Switanek (2020, per-

sonal communication) suggests that some of the skill

improvement carries over to subseasonal precipitation

forecasts. It has also been established that the Madden–

Julian oscillation (MJO) (Guan et al. 2012; Zhang 2013),

especially in combination with the quasi-biennial oscil-

lation (QBO) (Mundhenk et al. 2018; Zhang and Zhang

2018) influences winter precipitation over California, and

that poor representation of theArcticOscillation inNWP

models can limit their forecast skill (Singh et al. 2018).

These indices would all be candidates that could be used

as additional predictors in our ANN or CNN framework,

hoping that their interaction with the other predictor

variables improves forecast skill.

Another path forward is to look for ‘‘forecasts of op-

portunity’’ (i.e., to find ways for a priori identification of

skillful subseasonal forecasts) (e.g., Albers andNewman

2019). This information could be provided to the ANN/

CNN model as an additional predictor and allow it to

deviate more strongly from climatology in situations of

enhanced expected predictability. Somewhat better skill

can also be obtained by scaling back expectations on

temporal and spatial resolution. Combining week-3 and

week-4 lead times to week-3–4 outlooks, for example,

might make it easier to capture the time scales of rainfall

relationships to shifts in the jet stream and storm tracks

(Vigaud et al. 2020).

We finally note that the proposed ANN and CNN

methodology, while developed with subseasonal pre-

cipitation forecasts in mind, may well be suitable for

other weather variables and/or shorter forecast lead

times. This may require adjustments to the interpolation

scheme that reconstructs full predictive distributions

based on the predicted category probabilities from the

neural networks, and reassessment of the optimal neural

network complexity.
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APPENDIX A

Efficient Calculation of the Extreme Forecast
Index (EFI)

Denote by Fcl the CDF of the climatological distri-

bution at a fixed grid point and fixed day of the year. The

revised EFI proposed by Zsoter (2006) is defined as the

weighted integral over departures of the proportion of

EPSmembers lying below the a quantile of Fcl from that

level a:
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where x 5 (x1, . . . , xK) denotes the ensemble and 1 de-

notes the indicator function that is equal to 1 if the

condition in the bracket is fulfilled and 0 otherwise.

Using the definition and properties of the beta function

B(�, �) and integration by substitution we can rewrite

(A1) as

EFI(F
cl
, x)5

2

p

ð1
0

ffiffiffi
a

pffiffiffiffiffiffiffiffiffiffiffi
12a

p da2
2

pK
�
K

k51

ð1
0

1fF
cl
(x

k
)#agffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a(12a)
p da5

2

p
B

	
3

2
,
1

2



2

2

pK
�
K

k51

ð1
Fcl(xk)

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(12a)

p da

5 12
4

pK
�
K

k51

ð1 ffiffiffiffiffiffiffiffiffiffi
Fcl(xk)

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

12a2
p da5211

4

pK
�
K

k51

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F
cl
(x

k
)

qh i

5211
2

pK
�
K

k51

arccos[12 2F
cl
(x

k
)],

so the calculation of EFI(Fcl, x) reduces to a sum that

involves probability integral transforms Fcl(x1), . . . ,

Fcl(xK) of the ensemble forecasts with respect to the

climatological CDF. If the climatology is represented

by a sample j5 (j1, . . . , jL), Fcl can be approximated

by an empirical CDF F̂cl, and the probability integral

transform of xk is F̂cl(xk)5 (1/L)�L

l511fxk # jlg.

Here, we take a different approach and make the

same assumption as for the forecast distributions in

section 3b that Fcl can be approximated by a piecewise

exponential distribution. We calculate the 19 quantiles

with levels {0.05, 0.1, . . . , 0.95} from the sample j and

approximate Fcl by linear interpolation of the associated

cumulative hazard function as described in section 3b.
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APPENDIX B

Modified Categorical Cross-Entropy
Score (MCCES)

Denote by p 5 (p0, . . . , pm) a probability vector rep-

resenting the forecast probabilities for each of them1 1

categories, and let y5 (y0, . . . , ym) be the corresponding

binary observation vector. In the usual situation where

the assignment to a category is unambiguous, there is

exactly one component i such that yi 5 1 and yi 5 0 for

i 6¼ i. In this case the categorical cross-entropy loss

function is defined as

L (p, y)52�
m

i50

y
i
log(p

i
), (B1)

and it follows from Gibb’s inequality that L is a strictly

proper scoring rule formultinomial forecast distributions.

Assume now that there is a censoring mechanism that

prevents us from knowing the exact outcome and only re-

veals that for a given partitionA0, . . . ,Ar of {0, . . . ,m} and

some index j, i 2 Aj. We denote the partition by A and

define amodified categorical cross-entropy loss function via

L
A0,...,Ar

(p, y)52�
r

j50

y
Aj
log(p

Aj
) , (B2)

where yAj
d1fi 2 Aj, yi 5 1g and pAj

d�i2Aj
pi. We

demonstrate that this is a proper scoring rule for out-

comes distributed according to a multinomial distribu-

tion with probability vector p. For the expected loss for a

probability forecast vector q we obtain

E
p

h
L

A1,...,Ar
(q, y)

i
52�

m

i50

p
i �

r

j50

1fi 2 A
j
g log(q

Aj
)

52�
r

i50
�
i2Ai

p
i|fflffl{zfflffl}

5pAi

�
r

j50

1fi 2 A
j
g|fflfflfflfflfflffl{zfflfflfflfflfflffl}

50 for j6¼i

log(q
Aj
) 52�

r

i50

p
Ai
log(q

Ai
) $2�

r

i50

p
Ai
log(p

Ai
) ,

where the last inequality is Gibb’s inequality applied to

the probability vectors (pA0
, . . . , pAr

) and (qA0
, . . . , qAr

).

The last term is equal to Ep½L A0, ...,Ar
(p, y)� and thus

L A0, ...,Ar
is proper. Is is strictly proper only in the trivial

casewhere (after index permutation)Aj5 { j}, j5 0, . . . ,m.

We note that L A1, ...,Ar
can be written in a more con-

venient form if the incompletely known outcome is en-

coded in such away that for some index j, yi5 1 for all i2
Aj and yi 5 0 for all i ; Aj. This is how we encoded the

possibly ambiguous category assignments in section 3b.

The definition of the modified categorical cross-entropy

loss function in (B2) is then equivalent to

L
A0,...,Ar

(p, y)52log

	
�
m

i50

y
i
p
i



: (B3)

This form is easy to implement and computationally

efficient, and in the situation where yi 5 1 for one single

component i it is equivalent to the standard categorical

cross-entropy loss in (B1).

APPENDIX C

Construction of the Basis Functions in Fig. 4

The basis functions f1, . . . , f5 depicted in Fig. 4 are

constructed such as to induce a smooth function when

linearly combined as in (3) while having a local support

(i.e., they are zero beyond a certain radius r of influ-

ence), so that the associated coefficients x1,i, . . . , x5,i only

affect the forecasts within a limited geographic area. We

achieve that by first defining smooth, locally supported

radial basis functions:

q
~sj
(�)d

2
412

 k�2~s
j
k

r

!3
3
53

1

, (C1)

where jj�jj denotes the Euclidean norm (here applied

to differences in geographic coordinates), [�]1 5
max(�, 0), and ~s1, . . . , ~s5 are the center points of the

radial basis functions. The center points are cho-

sen as

~s
1
5 (21248, 408), ~s

2
5 (2120:58, 36:58),

~s
3
5 (2120:58, 408), ~s

4
5 (21178, 338),

~s
5
5 (21178, 36:58),

that is, they are 3.58 apart in both longitude and

latitude direction and inside the forecast domain.

The basis functions f1, . . . , f5 are then obtained

by normalizing these functions at each analysis grid

point:

3504 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 08:52 PM UTC



f
j
(�)d

q
~sj
(�)

�
5

j051

q
~sj0
(�)

: (C2)

This normalization ensures that a spatially constant

function can be obtained in (3) if all coefficients

x1,i, . . . , x5,i are identical. Each function fj is equal to

zero beyond a distance r from the associated center

point. In this study we chose r 5 78.
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